Chapter 4

GUI Tier

Here is the front end code, which simply populates a repeater with all of the
customer records:

<asp:Repeater ID="rptCustomers" runat="server"
DataKeyField="CustomerID" >
<HeaderTemplate>

<tr>
<th>
ID
</th>
<th>
Name
</th>

<th>
Edit
</th>
<th>
Delete
</th>
</tr>

</HeaderTemplate>
<ItemTemplate>

<trs>
<td>
<%$#Eval ("CustomerID") %>
</td>
<td>
<%#Eval ("Name") %>
</td>

<td align="right">
<asp:Button ID="btnEdit" runat="server"
Text="Edit"
CommandArgument="
<%$#Eval ("ProductID") %>"'
CommandName="edit"/>
</td>

<td align="right">

[103]

N-Tier Architecture

<asp:Button ID="btnDelete" runat="server"
Text="Delete"
CommandArgument="
<%$#Eval ("ProductID") %>
CommandName="delete" />
</td>

</tr>
</ItemTemplate>

</asp:Repeater>

This is a simple repeater control which gets populated with a list of customer objects
from the database, using the following code in the CustomerList .aspx.cs file:

private void FillCustomers ()
CustomerCollection list=new CustomerCollection() ;
rptCustomers.DataSource = list.FindAll () ;
rptCustomers.DataBind () ;

}

The customercollection class, which is defined in the next section, simply
returns a collection of Customer objects. So the GUI tier is completely independent
of the Data tier, and talks to the BL tier via a one-way reference (we have added a
reference to the BL in the GUI tier, and not the other way round). So our system is
loosely-coupled.

We can bind the Customer object properties in the ASPX using a declarative syntax,
and if we need to edit a particular customer, we just need to directly use the Customer
object's properties in the Editcustomer form, as in:

txtCustomerEmail.text = customer.Email;

When this property is called, the Load () method defined in the property will check if
the customer object is fully loaded or not; if not, it will load all of the properties. So
this is called load on demand — the core principle of the lazy loading design pattern.

[104]

